If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2t^2-2t-6=0
a = 2; b = -2; c = -6;
Δ = b2-4ac
Δ = -22-4·2·(-6)
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{13}}{2*2}=\frac{2-2\sqrt{13}}{4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{13}}{2*2}=\frac{2+2\sqrt{13}}{4} $
| 18=6(v-86) | | 93=3d | | 5-2w=19 | | s=2+3 | | 40=0.5x+1 | | v+3.65=5.55 | | -376=72y-88 | | 2(x+50=20 | | x-6.94=4.4 | | (9x+10)=96 | | 18=6(v−86) | | 8x-6+16+4=82 | | 2p^2+p+10=0 | | 15x-5=11x-3 | | -24+2m=-33 | | (2+5x)=96 | | 27x-27=81x+27 | | 16-2(x+3)=4 | | -24=-2x-38 | | -2(x-13)=-24 | | -24+2m=-23 | | 2+5x=96 | | -2n-12=-3n+21 | | x/6=3=6 | | 6(2x-5)=-(x+6) | | -7+5.2x=1-2.8x | | |6-2k|=18 | | 2(3x+4)-2x=5x-3(-2x+11) | | 4+7(9x)=19 | | 6x+3x=x-8 | | 23(x+2)=53 | | 2x-10+2x-10+2x-10=180 |